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Cheat Sheet for Probability Theory

Ingmar Land

1 Scalar-valued Random Variables

Consider two real-valued random variables (RV) X and Y with the individual probabil-
ity distributions pX(x) and pY (y), and the joint distribution pX,Y (x, y). The probability
distributions are probability mass functions (pmf) if the random variables take discrete
values, and they are probability density functions (ptf) if the random variables are con-
tinuous. Some authors use f() instead of p(), especially for continuous RVs.

In the following, the RVs are assumed to be continuous. (For discrete RVs, the integrals
have simply to be replaced by sums.)

• Marginal distributions:

pX(x) =

∫

pX,Y (x, y) d y pY (y) =

∫

pX,Y (x, y) d x

• Conditional distributions:

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
pY |X(y|x) =

pX,Y (x, y)

pX(x)

for pX(x) 6= 0 and pY (y) 6= 0

• Bayes’ rule:

pX|Y (x|y) =
pX,Y (x, y)

∫

pX,Y (x′, y) d x′
pY |X(y|x) =

pX,Y (x, y)
∫

pX,Y (x′, y) d y′

• Expected values (expectations):

E
[

g1(X)
]

:=

∫

g1(x) pX(x) d x

E
[

g2(Y )
]

:=

∫

g2(y) pY (y) d y

E
[

g3(X,Y )
]

:=

∫

g3(x, y) pX,Y (x, y) d x d y

for any functions g1(.), g2(.), g3(., .)
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• Some special expected values:

– Means (mean values):

µX := E
[

X
]

=

∫

x pX(x) d x µY := E
[

Y
]

=

∫

y pY (y) d y

– Variances:

σ2

X ≡ ΣXX := E
[

(X − µX)2
]

=

∫

(x − µX)2 pX(x) d x

σ2

Y ≡ ΣY Y := E
[

(Y − µY )2
]

=

∫

(y − µY )2 pY (y) d y

Remark: The variance measures the “width” of a distribution. A small variance
means that most of the probability mass is concentrated around the mean value.

– Covariance:

σXY ≡ ΣXY := E
[

(X − µX)(Y − µY )
]

=

∫

(x − µX)(y − µY ) pX,Y (x, y) d x d y

Remark: The covariance measures how “related” two RVs are. Two indepen-
dent RVs have covariance zero.

– Correlation coefficient:

ρXY :=
σXY

σXσY

– Relations:

E
[

X2
]

= ΣXX + µ2

X

E
[

Y 2
]

= ΣY Y + µ2

Y

E
[

X · Y
]

= ΣXY + µX · µY

– Proof of last relation:

E
[

XY
]

= E
[

((X − µX) + µX)((Y − µY ) + µY )
]

= E
[

(X − µX)(Y − µY )
]

− E
[

(X − µX)µY

]

− E
[

µX(Y − µY )
]

+

+ E
[

µXµY

]

= ΣXY − (E[X] − µX)µY − (E[Y ] − µY )µX + µXµY

= ΣXY + µXµY

This method of proof is typical.
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• Conditional expectations:

E
[

g(X)|Y = y
]

:=

∫

g(x)pX|Y (x|y) d x

Law of total expectation:

E
[

E
[

g(X)|Y
]

]

=

∫

E
[

g(X)|Y = y
]

pY (y) d y

=

∫ ∫

g(x)pX|Y (x|y) d xpY (y) d y

=

∫

g(x)

∫

pX|Y (x|y)pY (y) d y d x

=

∫

g(x)pX(x) d x

= E
[

g(X)
]

• Special conditional expectations:

– Conditional mean:

µX|Y =y := E
[

X|Y = y
]

=

∫

xpX|Y (x|y) d x

– Conditional variance:

ΣXX|Y =y := E
[

(X − µX)2|Y = y
]

=

∫

(x − µX)2pX|Y (x|y) d x

– Relation:

E
[

X2|Y = y
]

= ΣXX|Y =y + µ2

X|Y =y

• Sum of two random variables: Let Z := X + Y ; then

pZ(z) = pX(z) ∗ pY (z)

where ∗ denotes convolution. The proof uses the characteristic functions.

• The RVs are called independent if

pX,Y (x, y) = pX(x) · pY (y).

This condition is equivalently to the condition that

E
[

g1(X) · g2(Y )
]

= E
[

g1(X)
]

· E
[

g2(Y )
]

for all (!) functions g1(.) and g2(.).
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• The RVs are called uncorrelated if

σXY ≡ ΣXY = E
[

(X − µX)(Y − µY )
]

= 0.

Remark: If RVs are independent, they are also uncorrelated. The reverse holds only
for Gaussian RVs (see below).

• Two RVs X and Y are called orthogonal if E[XY ] = 0.

Remark: The RVs with finite energy, E[X2] < ∞, form a vector space with scalar
product 〈X,Y 〉 = E[XY ] and norm ‖X‖ =

√

E[X2]. (This is used in MMSE
estimation.)

These relations for scalar-valued RVs are generalized to vector-valued RVs in the
following.

2 Vector-valued Random Variables

Consider two real-valued vector-valued random variables (RV)

X =

[

X1

X2

]

, Y =

[

Y1

Y2

]

with the individual probability distributions pX(x) and pY (y), and the joint distribution
pX,Y (x, y). (The following considerations can be generalized to longer vectors, of course.)
The probability distributions are probability mass functions (pmf) if the random vari-
ables take discrete values, and they are probability density functions (pmf) if the random
variables are continuous. Some authors use f() instead of p(), especially for continuous
RVs.

In the following, the RVs are assumed to be continuous. (For discrete RVs, the integrals
have simply to be replaced by sums.)

Remark: The following matrix notations may seem to be cumbersome at the first
glance, but they turn out to be quite handy and convenient (once you got used to).

• Marginal distributions, conditional distributions, Bayes’ rule, expected values work
as in the scalar case.

• Some special expected values:

– Mean vector (vector of mean values):

µ
X

:= E
[

X
]

= E

[

X1

X2

]

=

[

E[X1]
E[X2]

]

=

[

µX1

µX2

]
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– Covariance matrix (auto-covariance matrix):

ΣXX := E
[

(X − µ
X

)(X − µ
X

)T
]

= E

[[

X1 − µ1

X2 − µ2

]

[

X1 − µ1 X2 − µ2

]

]

=

[

E
[

(X1 − µ1)(X1 − µ1)
]

E
[

(X1 − µ1)(X2 − µ2)
]

E
[

(X2 − µ2)(X1 − µ1)
]

E
[

(X2 − µ2)(X2 − µ2)
]

]

=

[

ΣX1X1
ΣX1X2

ΣX2X1
ΣX2X2

]

– Covariance matrix (cross-covariance matrix):

ΣXY := E
[

(X − µ
X

)(Y − µ
Y
)T
]

=

[

ΣX1Y1
ΣX1Y2

ΣX2Y1
ΣX2Y2

]

Remark: This matrix contains the covariance of each element of the first vector
with each element of the second vector.

– Relations:

E
[

XXT
]

= ΣXX + µ
X

µT

X

E
[

XY T
]

= ΣXY + µ
X

µT

Y

Remark: This result is not too surprising when you know the result for the
scalar case.

3 Gaussian Random Variables

• A Gaussian RV X with mean µX and variance σ2

X is a continuous random variable
with a Gaussian pdf, i.e., with

pX(x) =
1

√

2πσ2

X

· exp
(

−(x − µX)2

2σ2

X

)

The often used symbolic notation

X ∼ N (µX , σ2

X)

may be read as: X is (distributed) Gaussian with mean µX and variance σ2

X .

• A Gaussian distribution with mean zero and variance one is called a normal distri-
bution:

p(x) =
1√
2π

e−
x
2

2 .
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Some authors use the term “normal distribution” equivalently with “Gaussian dis-
tribution”. So, use the term “normal distribution” with caution.

The integral of a normal pdf cannot be solved in closed form and is therefore often
expressed using the Q-function

Q(z) :=
1√
2π

∫ ∞

z

e−
x
2

2 d x

Notice the limits of the integral. The integral of any Gaussian pdf can also be
expressed using the Q-function, of course.

• A vector-valued RV X with mean µ
X

and covariance matrix ΣXX ,

X =

[

X1

X2

]

, µ
X

=

[

µX1

µX2

]

, ΣXX =

[

ΣX1X1
ΣX1X2

ΣX2X1
ΣX2X2

]

,

is called Gaussian if its components have a jointly Gaussian pdf

pX(x) =
1

√
2π

2|ΣXX |1/2

· exp
(

−1

2
(X − µ

X
)TΣXX(X − µ

X
)
)

.

(There is nothing to understand, this is just a definition.) The marginal distri-
butions and the conditional distributions of a Gaussian vector are again Gaussian
distributions. (But this can be proved.)

The corresponding symbolic notation is

X ∼ N (µ
X

, ΣXX)

This can be generalized to longer vectors, of course.

• Gaussian RVs are completely described by mean and covariance. Therefore, if they
are uncorrelated, they are also independent. This holds only for Gaussian RVs. (Cf.
above.)


