
“Crush bugs now. Pay less later.”

 <your code>

http://coverity.com

© DZone, Inc. | dzone.com

13 Things Every C#
Developer Should Know

By Eric Lippert and Jon Jarboe

» Development Process

» Type Gotchas

» Class Gotchas

» Generics

» Conversions and Casts

» Exceptions

» And More...

C
O

N
T

E
N

T
S

Ja
v

a
 E

n
t

e
r

p
r

is
e

 E
d

it
io

n
 7

1. Development Process

The development process is where bugs and defects start. Take
advantage of tools that help you avoid or find these problems
before you release:

Coding Standards
Consistent use of a standard can lead to more maintainable
code, especially in code bases written and maintained by
multiple developers or teams. Tools such as FxCop, StyleCop,
and ReSharper are commonly used to enforce coding standards.

Developers: Carefully consider violations and analysis results
before suppressing them. They identify problems in code paths
that are less unusual than you expect.

Code Review
Code review and pair programming are common practices that
task developers with deliberately reviewing source code written
by others. Others will hopefully recognize mistakes made by the
author, such as coding or implementation bugs.

Code review is a valuable practice, but it is fallible by nature of
relying on humans and can be difficult to scale.

Static Analysis
Static analysis tools analyze your code without running it, looking
for problems like violations of coding standards or the existence
of defects without requiring you to write test cases. It is effective
at finding problems, but you need to choose tools that identify
valuable problems without too many false positives. C# static
analysis tools include Coverity, CAT.NET, and Visual Studio Code
Analysis.

Dynamic Analysis
Dynamic analysis tools analyze your code while it is running,
helping you look for defects such as security vulnerabilities,
performance and concurrency problems. It analyzes the code in
the context of the runtime environment, so its effectiveness is
limited by the testing workload. Visual Studio provides a number
of dynamic analysis tools, including the Concurrency Visualizer,
IntelliTrace, and Profiling Tools.

Managers/Team Leads: Leverage development best practices
to avoid common pitfalls. Carefully consider available tools to
ensure they are compatible with your needs and culture. Commit
your team to keeping the diagnostic noise level manageable.

Testing
There are many types of tests, such as: unit tests, system
integration tests, performance tests, penetration tests. In the
development phase, most tests are written by developers or
testers to verify the application meets its requirements.

Tests are effective only to the extent that they exercise the right
code. It can be challenging to maintain development velocity
while implementing both functionality and tests.

Development Best Practices
Invest the time to identify and configure tools to find problems
you care about, without creating extra work for developers. Run
analysis tools and tests frequently and automatically, to ensure
developers address problems while the code is still fresh in mind.

Address all diagnostic output—whether it’s compiler warnings,
standards violations, defects identified through static analysis,
or testing failures—as quickly as possible. If interesting new

Ge
t M

or
e

Re
fc

ar
dz

! V
is

it
Re

fc
ar

dz
.co

m
BROUGHT TO YOU BY:

16
13

 t
h

in
g

s
 e

v
e

r
y

 c
#

 d
e

v
e

l
o

p
e

r
 s

h
o

u
l

d
 k

n
o

w

diagnostics get lost in a sea of “don’t cares” or ignored
diagnostics, the effort of reviewing results will increase until
developers no longer bother.

Adopting these best practices helps improve the quality, security,
and maintainability of your code as well as the consistency and
productivity of developers and predictability of releases.

Concern Tool Impact

Consistency,
Maintainability

Coding standards,
static analysis, code
review

Consistent spacing,
naming, and formatting
improve readability
and make it easier for
developers to write and
maintain code.

Correctness Code review, static
analysis, dynamic
analysis, testing

Code needs to not only
be syntactically valid,
but it must behave as
the developer intends
and meet project
requirements.

Functionality Testing Tests verify that code
meets requirements
such as correctness,
scalability, robustness,
and security.

Security Coding standards, code
review, static analysis,
dynamic analysis,
testing

Security is a very
complex problem; any
weakness or defect can
potentially be exploited.

Developer productivity Coding standards,
static analysis, testing

Developers implement
code changes more
quickly when they
have tools to identify
mistakes.

Release predictability Coding standards, code
review, static analysis,
dynamic analysis,
testing

Streamline late-phase
activity and minimize
fix cycles by addressing
defects and problems
early.

2. Type Gotchas

One of C#’s major strengths is its flexible type system; type
safety helps catch errors early. By enforcing strict type rules, the
compiler is able to help you maintain sane coding practices.

“Disaster or total epic win?
 Hey no pressure or anything.”
 <your code>

http://www.dzone.com?refcardz
http://www.refcardz.com
http://coverity.com
http://coverity.com

© DZone, Inc. | dzone.com

2 13 things every c# developer should know

The C# language and .NET framework provide a rich collection of
types to accommodate the most common needs. Most developers
have a good understanding of the common types and their uses,
but there are some common misunderstandings and misuses.

More information about the .NET Framework Class Library can be
found in the MSDN library.

Understand and use the standard interfaces
Certain interfaces relate to idiomatic C# features. For example,
IDisposable allows the use of common resource-handling idioms
such as the “using” keyword. Understanding when to use the
interfaces will enable you to write idiomatic C# code that is easier
to maintain.

Avoid ICloneable—the designers never made it clear whether a
cloned object was intended to be a deep or shallow copy. Since
there is no standard for correct behavior of a cloned object, there’s
no ability to meaningfully use the interface as a contract.

Structures
Try to avoid writing to structs. Treating them as immutable prevents
confusion, and is much safer in shared memory scenarios like
multithreaded applications. Instead, use initializers when you create
structs and create new instances if you need to change the values.

Understand which standard types/methods are immutable and
return new values (for example, string, DateTime), versus those that
are mutable (List.Enumerator).

Strings
Strings may be null, so use the convenience functions
when appropriate. Evaluating (s.Length==0) may throw a
NullReferenceException, while String.IsNullOrEmpty(s) and String.
IsNullOrWhitespace(s) gracefully handle null.

Flagged enumerations
Enumerated types and constant values help to make the code more
readable by replacing magic numbers with identifiers that expose
the meaning of the value.

If you find that you need to create a collection of enums, a flagged
enum might be a simpler choice:

[Flag]
public enum Tag {
 None =0x0,
 Tip =0x1,
 Example=0x2
}
public class Snippet {
 public Tag Tag {get;set;};
}

This enables you to easily have multiple tags for a snippet:

snippet.Tag = Tag.Tip | Tag.Example

This can improve data encapsulation, since you don’t have to worry
about exposing an internal collection via the Tag property getter.

Equality comparisons
There are two types of equality:

1. Reference equality, which means that two references refer to
the same object.

2. Value equality, which means that two referentially distinct
objects should be considered as equal.

Moreover, C# provides multiple ways to test for equality. The most
common techniques are to use:

•	The == and != operators

•	The virtual Equals method inherited from Object

•	The static Object.Equals method

•	The Equals method of the IEquatable<T> interface

•	The static Object.ReferenceEquals method

It can be difficult to know whether reference or value equality
is intended. Review the MSDN equality topic to ensure your
comparison works as expected: http://msdn.microsoft.com/en-us/
library/dd183752.aspx

If you override Equals, don’t forget IEquatable<T>, GetHashCode(),
and so on as described in MSDN.

Beware the impact of untyped containers on overloads. Consider
the comparison “myArrayList[0] == myString”. The array list
element is of compile-time type “object,” so reference equality is
used. The C# compiler will warn you about this potential error, but
there are many similar situations where the compiler does not warn
about unexpected reference equality.

3. Class Gotchas

Encapsulate your data
Classes are responsible for managing data properly. For
performance reasons they often cache partial results or otherwise
make assumptions about the consistency of their internal data.
Making data publicly accessible compromises your ability to cache
or make assumptions—with potential impacts on performance,
security, and concurrency. For example, exposing mutable members,
like generic collections and arrays, allows users to modify those
structures without your knowledge.

Properties
Properties enable you to control exactly how users can interact with
your object, beyond what you can control through access modifiers.
Specifically, properties enable you to control what happens on read
and write.

Properties enable you to establish a stable API while overriding data
access logic in the getters and setters, or to provide a data binding
source.

Never throw an exception from a property getter, and avoid
modifying object state. Such desires imply a need for a method
rather than a property getter.

For more information about properties, see MSDN’s property
design topic: http://msdn.microsoft.com/en-us/library/
ms229006(v=vs.120).aspx

Be careful with getters that have side effects. Developers are
conditioned to believe that member access is a trivial operation, so
they often forget to consider side effects during code reviews.

Object initializers
You can set properties on a newly created object from within the
creation expression itself. To create a new object of class C with
specified values for the Foo and Bar properties:

new C {Foo=blah, Bar=blam}

You can also create instances of anonymous types with specific
property names:

var myAwesomeObject = new {Name=”Foo”, Size=10};

Initializers execute before the constructor body runs, ensuring that
fields are initialized before entering the constructor. Because the
constructor has not yet run, a field initializer may not refer to “this”

http://www.dzone.com?refcardz
http://msdn.microsoft.com/en-us/library/ms229006(v=vs.120).aspx
http://msdn.microsoft.com/en-us/library/ms229006(v=vs.120).aspx
http://coverity.com

© DZone, Inc. | dzone.com

3 13 things every c# developer should know

in any way.

Over-specifying input parameters
To help prevent proliferation of specialized methods, try to use the
least specific type needed by the method. For example, consider a
method that iterates over a List<Bar>:

public void Foo(List<Bar> bars)
{
 foreach(var b in bars)
 {
 // do something with the bar...
 }
}

This code should work perfectly well for other IEnumerable<Bar>
collections, but by specifying List<Bar> for the parameter, you
require that the collection be a List. Choose the least specific type
(IEnumerable<T>, ICollection<T>, and so on) for the parameter to
ensure maximal usefulness of the method.

4. Generics

Generics are a powerful way of defining type-independent
structures and algorithms that can enforce type safety.

Use generics collections such as List<T> instead of untyped
collections such as ArrayList to improve both type safety and
performance.

When implementing a generic type, you can use the “default”
keyword to get the default value for a type whose default value
cannot be hardcoded into the implementation. Specifically, numeric
types have a default value of 0; reference and nullable value types
have a default value of null.

T t = default(T);

 5. Conversions and Casts

There are two types of conversions. Explicit conversions must be
invoked by the developer, and implicit conversions are applied by
the compiler based on context.

Constant 0 is implicitly convertible to enum. When you’re trying
to call a method that takes a number, you may end up calling a
method that takes an enum.

Cast Description

Tree tree = (Tree)obj; Use this when you expect that obj will
only ever be of type Tree. If obj is not
a Tree, an InvalidCast exception will
be raised.

Tree tree = obj as Tree; Use this when you anticipate that obj
may or may not be a Tree. If obj is not
a Tree, a null value will be assigned to
tree. Always follow an “as” cast with
conditional logic to properly handle
the case where null is returned.

Only use this style of conversion
when necessary, since it necessitates
conditional handling of the return
value. This extra code creates
opportunities for more bugs and
makes the code more difficult to read
and debug.

Casting usually means one of two things:

1.	 You know that the runtime type of an expression will be
more specific than the compiler can deduce. The cast
instructs the compiler to treat the expression as the
more specific type. The compiler will generate code that
throws an exception if your assumption was incorrect. For
example, a conversion from object to string.

2.	 You know that there is a value of a completely different
type associated with the value of the expression. The cast
instructs the compiler to generate code that produces this
associated value, or throws an exception if there is none.
For example, a conversion from double to integer.

Both kinds of casts are red flags. The first kind of cast raises the
question, “why exactly is it that the developer knows something
that the compiler doesn’t?” If you are in that situation, try to change
the program so that the compiler can successfully deduce the
correct type. If you think that perhaps the runtime type of an object
is of a more specific type than the compile time type, then you can
use the “is” or “as” operators.

The second kind of cast raises the question, “why isn’t the operation
being done in the target data type in the first place?” If you need
a result of type int, it might make more sense to use an int than a
double.

For additional thoughts see: http://blogs.msdn.com/b/ericlippert/
archive/tags/cast+operator/

In cases where an explicit conversion is the right thing to do,
improve readability, debug-ability, and testability by using the
appropriate operator.

6. Exceptions

Exceptions are not conditions
Exceptions should generally not be used to control program flow;
they represent unexpected circumstances at runtime from which
you may not be able to recover. If you anticipate a circumstance
that you should handle, proactively check for the circumstance
rather than waiting for an exception to fire.

To gracefully convert unreliably formatted strings to numbers, use
the TryParse() method; rather than throwing an exception, it returns
a Boolean indicating whether the parsing was successful.

Use care with exception handling scope
Write code inside catch and finally blocks carefully. Control might
be entering these blocks due to an unexpected exception; code that
you expected to have executed already might have been skipped by
the exception. For example:

Frobber originalFrobber = null;
try {
 originalFrobber = this.GetCurrentFrobber();
 this.UseTemporaryFrobber();
 this.frobSomeBlobs();
}
finally {
 this.ResetFrobber(originalFrobber);
}

If GetCurrentFrobber() throws an exception, then originalFrobber
is still null when the finally block is executed; if GetCurrentFrobber
cannot throw, then why is it inside a try block?

Handle exceptions judiciously
Only catch specific exceptions that you are prepared to handle, and
only for the specific section of code where you expect it to arise.
Avoid the temptation to handle all exceptions or instances of the
root class Exception unless your intention is simply to log and re-
throw the exception. Certain exceptions may leave the application
in a state where it is better to crash without further damage than to
futilely try to recover and inflict damage. Your attempts to recover
may inadvertently make matters worse.

There are some nuances around handling fatal exceptions,
especially concerning how the execution of finally blocks can
impact exception safety and the debugger. For more info, see:
http://incrediblejourneysintotheknown.blogspot.com/2009/02/
fatal-exceptions-and-why-vbnet-has.html

http://www.dzone.com?refcardz
http://blogs.msdn.com/b/ericlippert/archive/tags/cast+operator/
http://blogs.msdn.com/b/ericlippert/archive/tags/cast+operator/
http://incrediblejourneysintotheknown. blogspot.com/2009/02/fatal-exceptions-and-why-vbnet-has.html
http://incrediblejourneysintotheknown. blogspot.com/2009/02/fatal-exceptions-and-why-vbnet-has.html
http://coverity.com

© DZone, Inc. | dzone.com

4 13 things every c# developer should know

Use a top-level exception handler to safely handle unexpected
situations and expose information to help debug the problem. Use
catch blocks sparingly to address specific cases that can be safely
handled, and leave the unexpected cases for the top-level handler.

If you do catch an exception, do something with it. Swallowing
exceptions only makes problems harder to recognize and debug.

Wrapping exceptions in a custom exception is especially useful
for code that exposes a public API. Exceptions are part of the
visible interface of a method, which should be controlled along
with parameters and return values. Methods that propagate
many exceptions are extremely difficult to integrate into robust,
maintainable solutions.

Throwing and rethrowing exceptions
When you wish to handle a caught exception at a higher level,
maintaining the original exception state and stack can be a
great debugging aid. Carefully balance debugging and security
considerations.

Good options include simply rethrowing the exception:
throw;

or using the exception as the InnerException in a new throw:
throw new CustomException(…, ex);

Do not explicitly rethrow the caught exception like this:
throw e;

That will reset the exception state to the current line and impede
debugging.

Some exceptions originate outside the context of your code.
Rather than using a catch block you may need to add handlers for
events like ThreadException or UnhandledException. For example,
Windows Forms exceptions are raised in the context of the form
handler thread.

Atomicity (data integrity)
Exceptions must not impact the integrity of your data model. You
need to ensure that your object is in a consistent state—that any
assumptions made by the class implementation will not be violated.
Otherwise, by “recovering” you may only enable your code to get
confused and cause further damage later.

Consider methods that modify several private fields in sequence.
If an exception is thrown in the middle of this sequence of
modifications, your object may not be in a valid state. Try working
out the new values before actually updating the fields, so that you
can safely update all of the fields in an exception-safe manner.

Assignment of values of certain types—including bool, 32 bit or
smaller numeric types and references—to a variable is guaranteed
to be atomic. No such guarantee is made for larger types such as
double, long and decimal. Consider always using lock statements
when modifying variables shared by multiple threads.

7. Events

Events and delegates work together to provide a means for classes
to notify users when something interesting happens. The value of an
event is the delegate that should be invoked when the event occurs.
Events are like fields of delegate type; they are automatically
initialized to null when the object is created.

Events are like a field whose value is a “multicast” delegate. That is,
a delegate that can invoke other delegates in turn. You can assign a
delegate to an event; you can manipulate events via operators like
+= and -=.

Beware race conditions
If an event is shared between threads, it is possible that another

thread will remove all subscribers after you check for null and
before you invoke it—throwing a NullReferenceException.

The standard solution is to make a local copy of the event, to be
used for the test and the invocation. You still need to be careful
that any subscribers removed in the other thread will operate
correctly when their delegate is unexpectedly invoked. You can also
implement locking to sequence the operations in a way that avoids
problems.

public event EventHandler SomethingHappened;

private void OnSomethingHappened()

{

 // The event is null until somebody hooks up to it

 // Create our own copy of the event to protect against
another thread removing our subscribers

 EventHandler handler = SomethingHappened;

 if (handler != null)

 handler(this,new EventArgs());

}

For more information about events and races see: http://blogs.
msdn.com/b/ericlippert/archive/2009/04/29/events-and-races.
aspx

Don’t forget to unhook event handlers
Subscribing an event handler to an event source creates a reference
from the source object to the receiver object of the handler, which
can prevent garbage collection of the receiver.

Properly unhooking handlers ensures that you waste neither time
calling delegates that no longer work, nor memory storing useless
delegates and unreferenced objects.

8. Attributes

Attributes provide a means for infusing the metadata for
assemblies, classes, and properties with information about their
properties. They are most often used to provide information to
consumers of the code—like debuggers, testing frameworks, and
applications—via refection. You can define attributes for your own
use or use predefined attributes like those listed in the table.

Attribute Used With Purpose

DebuggerDisplay Debugger Debugger display format

DebuggerBrowsable Debugger Controls how debugger
shows the element
(hidden, collapsed, and
so on).

InternalsVisibleTo Member access Enables classes to
expose internal members
to specific other
classes. With it, testing
routines can access
protected members
and persistence layers
can use special private
methods.

DefaultValue Properties Specifies a default value
for a property.

Be very careful with the DebuggerStepThrough attribute—it can
make it very difficult to find bugs in methods to which it is applied,
since you will not be able to single step or break on them!

9. Debugging

Debugging is an essential part of any development effort. In
addition to providing visibility into normally opaque aspects of the
runtime environment, the debugger can intrude on the runtime
environment and cause the application to behave differently than if

http://www.dzone.com?refcardz
http://blogs.msdn.com/b/ericlippert/archive/2009/04/29/events-and-races.aspx
http://blogs.msdn.com/b/ericlippert/archive/2009/04/29/events-and-races.aspx
http://blogs.msdn.com/b/ericlippert/archive/2009/04/29/events-and-races.aspx
http://coverity.com

© DZone, Inc. | dzone.com

5 13 things every c# developer should know

it were run without the debugger.

Getting visibility into the exception stack
To see the current frame’s exception state, you can add the
expression “$exception” to a Visual Studio Watch window. This
variable contains the current exception state, similar to what
you would see in a catch block except that you can see it in the
debugger without actuallycatching the exception in the code.

Be careful with side effects in accessors
If your properties have side effects, consider whether you should
use an attribute or debugger setting to prevent the debugger from
automatically calling the getter. For example, your class may have a
property like this:

private int remainingAccesses = 10;
private string meteredData;
public string MeteredData
{
 get
 {
 if (remainingAccesses-- > 0)
 return meteredData;
 return null;
 }
}

The first time you view this object in the debugger,
remainingAccesses will show as having a value of 10 and
MeteredData will be null. If you hover over remainingAccesses,
however, you will see that its value is now 9. The debugger’s display
of the property value has changed the state of your object.

10. Optimization

Plan early, measure constantly, optimize later
Set reasonable performance goals during design. During
development, concentrate on correctness rather than micro-
optimizations. Measure your performance frequently against your
goals. Only if you have failed to meet your goals should you spend
valuable time trying to optimize a program.

Always use the most appropriate tools to make empirical
measurements of performance, under conditions that are both
reproducible and as similar as possible to real-world conditions
experienced by the user.

When you measure performance, be careful about what you are
actually measuring. When measuring the time taken in a function,
does your measurement include function call or looping construct
overhead?

There are many myths about certain constructs being faster than
others. Don’t assume these are true; experiment and measure.

Sometimes inefficient-looking code can actually run faster than
efficient-looking code due to CLR optimizations. For example, the
CLR optimizes loops that cover an entire array, to avoid the implicit
per-element range checking. Developers often compute the length
before looping over an array:

int[] a_val = int[4000];

int len = a_val.Length;
for (int i = 0; i < len; i++)
 a_val[i] = i;

By putting the length in a variable, the CLR might not be able to
recognize the pattern and will skip the optimization. The manual

optimization has counterintuitively caused worse performance.

Building strings
If you are going to be doing a lot of string concatenation, use the
System.Text.StringBuilder object to avoid building many temporary
string objects.

Use batch operations with collections
If you need to create and fill a collection of known size, reserve
the space when creating the collection to avoid performance and
resource problems due to repeated reallocation. You can further
improve performance with an AddRange method, like that in
List<T>:

Persons.AddRange(listBox.Items);

11. Resource Management

The garbage collector enables automatic cleanup of memory. Even
so, all disposable resources must be disposed properly—especially
those not managed by the garbage collector.

Common sources of resource management problems

Memory fragmentation Allocations will fail if there is not a
large enough contiguous chunk of
virtual address space.

Process limits Processes often have access to a strict
subset of the memory and resources
available to the system.

Resource leaks The garbage collector only manages
memory. Other resources need to be
managed correctly by the application.

Resource in limbo Resources that rely on the garbage
collector and finalizers will not become
available as soon as they are no longer
used. In fact, they may never become
available.

Use try/finally blocks to ensure resources are properly released, or
have your classes implement IDisposable and take advantage of the
using statement which is cleaner and safer.

using (StreamReader reader=new StreamReader(file))
{
 //your code here

Avoid the garbage collector in production code
Instead of interfering with the garbage collector by calling
GC.Collect(), focus on properly releasing or disposing resources.

When measuring performance, be careful to have the garbage
collector run when you can properly account for its impact.

Avoid writing finalizers
Contrary to popular rumors, your class doesn’t need a Finalizer just
because it implements IDisposable! You can implement IDisposable
to give your class the ability to call Dispose on any owned
composite instances, but a finalizer should only be implemented on
a class that directly owns unmanaged resources.

Finalizers are primarily useful for calling an interop API to dispose of
a Win32 handle, and SafeHandle handles that more easily.

You cannot assume that your finalizer—which always runs on the
finalizer thread—can safely interact with other objects. Those other
objects might themselves be in the process of being finalized.

12. Concurrency

Concurrency and multithreaded programming are complicated,
difficult affairs. Before you add concurrency to your application,
make sure you really understand what you are doing—there are a lot
of subtleties!

http://www.dzone.com?refcardz
http://coverity.com

© DZone, Inc. | dzone.com

5 13 things every c# developer should know

Multithreaded applications are very difficult to reason about, and
are susceptible to issues like race conditions and deadlocks that do
not generally affect single-threaded applications. Given these risks,
you should consider multi-threading as a last resort. If you must
have multiple threads, try to minimize the need for synchronization
by not sharing memory between threads. If you must synchronize
threads, use the highest-level synchronization mechanism that you
can. With highest level first, these mechanisms include:

•	Async-await/Task Parallel Library/Lazy<T>

•	Lock/monitor/AutoResetEvent

•	Interlocked/Semaphore

•	Volatile fields and explicit barriers

This card is far too small to explain the intricacies of concurrency in
C#/.NET. If you want or need to develop an application that utilizes
concurrency, please review a detailed document such as O’Reilly’s
“Concurrency in C# Cookbook”.

Using volatile
Marking a field as “volatile” is an advanced feature that is frequently
misunderstood even by experts. The C# compiler will ensure that
accessing the field has acquire and release semantics; this is not the
same as ensuring that all accesses to the field are under a lock. If
you do not know what acquire and release semantics are and how
they affect CPU-level optimizations then avoid using volatile fields.
Instead, use higher-level tools such as the Task Parallel Library or
the CancellationToken type.

Leverage thread-safe built-in methods
Standard library types often provide methods that facilitate thread-
safe access to objects. For example, Dictionary.TryGetValue(). Using
these methods generally make your code cleaner and you don’t
need to worry about data races like time-of-check-time-of-use
scenarios.

Don’t lock on “this”, strings, or other common, public objects
When implementing classes that will be used in multithreaded
contexts, be very careful with your use of locks. Locking on this,
string literals, or other public objects prevents encapsulation of your
locking state and can lead to deadlock. You need to prevent other
code from locking on the same object your implementation uses;
your safest bet is a private object member.

13. Common Mistakes to Avoid

Dereferencing null
Improper use of null is a common source of coding defects that
can lead to program crashes and other unexpected behavior. If
you try to access a null reference as if it were a valid reference to
an object—for example, by accessing a property or method—the
runtime will throw a NullReferenceException.

Static and dynamic analysis tools can help you identify potential
NullReferenceExceptions before you release your code.

In C#, null references typically result from variables that have not
yet referenced an object. Null is a valid value for nullable value types
and reference types. For example, Nullable<int>, empty delegates,
unsubscribed events, failed “as” conversions, and in numerous other
situations.

Every null reference exception is a bug. Instead of catching the
NullReferenceException, try to test objects for null before you use
them. That also makes the code easier to read by minimizing try/
catch blocks.

When reading data from a database table, be aware that missing
values could be represented as DBNull objects rather than as
null references. Don’t expect them to behave like potential null
references.

Use of binary numbers for decimal values
Float and double represent binary rationals, not decimal rationals,
and necessarily use binary approximations when storing decimal
values. From a decimal perspective, these binary approximations
have inconsistent rounding and precision—sometimes leading to
unexpected results from arithmetic operations. Because floating
point arithmetic is often performed in hardware, hardware
conditions can unpredictably exacerbate these differences.

Use Decimal when decimal precision really matters—like with
financial calculations.

Modifying structs
One common error scenario is to forget that structs are value
types—meaning that they are copied and passed by value. For
example, say you have code like this:

struct P { public int x; public int y; }

void M()
{
 P p = whatever;
 …
 p.x = something;
 …
 N(p);
}

 One day, the maintainer decides to refactor the code into this:

void M()
{
 P p = whatever;
 Helper(p);
 N(p);
}
void Helper(P p)
{
 …
 p.x = something;
 …
}

And now when N(p) is called in M(), p has the wrong value. Calling
Helper(p) passes a copy of p, not a reference to p, so the mutation
performed in Helper() is lost. Instead, Helper should return a copy of
the modified p.

Unexpected arithmetic
The C# compiler protects you from arithmetic overflows of
constants, but not necessarily computed values. Use “checked” and
“unchecked” keywords to ensure you get the behavior you want
with variables.

Neglecting to save return value
Unlike structs, classes are reference types and methods can modify
the referenced object in place. However, not all object methods
actually modify the referenced object; some return a new object.
When developers call the latter, they need to remember to assign
the return value to a variable in order to use the modified object.
During code reviews, this type of problem often slips under the
radar. Some objects, like string, are immutable so methods never
modify the object. Even so, developers commonly forget.

For example, consider string.Replace():

string label = “My name is Aloysius”;
label.Replace(“Aloysius”, “secret”);
Console.Out.WriteLine(label);

The code prints “My name is Aloysius” because the Replace method
doesn’t modify the string.

http://www.dzone.com?refcardz
http://coverity.com

© DZone, Inc. | dzone.com

6 13 things every c# developer should know

Don’t invalidate iterators/enumerators
Be careful not to modify a collection while iterating over it.

List<int> myItems = new List<int>{20,25,9,14,50};

foreach(int item in myItems)
{
 if (item < 10)
 {
 myItems.Remove(item);
 // iterator is now invalid!
 // you’ll get an exception on the next iteration
 }
}

If you run this code you’ll get an exception thrown as soon as it
loops around for the next item in the collection.

The correct solution is to use a second list to hold the items you
want to delete then iterate that list while you delete:

List<int> myItems = new List<int>{20,25,9,14,50};
List<int> toRemove = new List<int>();

foreach(int item in myItems)
{
 if (item < 10)
 {
 toRemove.Add(item);
 }
}

foreach(int item in toRemove)
{
 myItems.Remove(item);
}

Or if you’re using C# 3.0 or newer you can use the List<T>.

RemoveAll like this:

myInts.RemoveAll(item => (item < 10));

Property name mistakes
When implementing properties, be careful that the property name
is distinct from the data member used in the class. It is easy to
accidentally use the same name and trigger infinite recursion when
the property is accessed.

// The following code will trigger infinite recursion
private string name;
public string Name
{
 get
 {
 return Name; // should reference “name” instead.
 }
}

Beware when renaming indirect properties too. For example, data
binding in WPF specifies the property name as a string. By
carelessly changing that property name, you can inadvertently
create problems that the compiler cannot protect against.

ABOUT THE AUTHORS RECOMMENDED BOOK
Essential C# 5.0 is a well-organized, no-fluff guide to the latest
versions of C# for programmers at all levels of C# experience.
Fully updated to reflect new features and programming patterns
introduced with C# 5.0 and .NET 4.5, this guide shows you how
to write C# code that is simple, powerful, robust, secure, and
maintainable. Microsoft MVP Mark Michaelis and C# principal
developer Eric Lippert provide comprehensive coverage of the
entire language, offering a complete foundation for effective
software development.

Jon Jarboe has been improving software development tools for over
20 years, in contexts ranging from embedded systems to enterprise
applications. He is a passionate advocate for the quality, security, and
productivity benefits of disciplined software testing throughout the SDLC.
He greatly enjoys his role at Coverity, which provides the opportunity to
understand the challenges faced by development teams, to influence
the development of tools to address those challenges, and to help others
understand how disciplined testing can improve development velocity
and agility while simultaneously improving quality, security, and efficiency.

Eric Lippert is an expert in C# and architect at Coverity where he works on
the C# analysis team. Prior to joining Coverity in January, 2013, Eric spent
16 years at Microsoft and was most recently a principal developer on the
C# compiler team focused on Roslyn and a member of the C# language
design team.

BUY NOW

Browse Our Collection of 250+ Free Resources, including:
Research Guides: Unbiased insight from leading tech experts
Refcardz: Library of 200+ reference cards covering the latest tech topics
Communities: Share links, author articles, and engage with other tech experts

JOIN NOW
DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513
888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com
Sponsorship Opportunities
sales@dzone.com

Copyright © 2014 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including
news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

http://www.dzone.com?refcardz
http://amazon.com/Essential-Edition-Microsoft-Windows-Development/dp/0321877586
http://www.dzone.com/user/register/
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

